M. Sc. Greology

12P/205/29

-		, d e er
	(To be filled up by the candidate by blue/bl	ack ball-point pen)
Roll No.		
Roll No. (Write the o	digits in words)	
	of OMR Answer Sheet	
Day and D	ate	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- **3.** A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark)
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

[No. of Printed Pages: 24+2

No. of Questions/प्रश्नों की संख्या: 150

Time/समय: 2 Hours/घण्टे

Full Marks/पूर्णांक: 450

Note/नोट: (1) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

(2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।

1. The average radius of the earth is

- (1) 6378 km
- (2) 637·1 km
- (3) 6372 km
- (4) 6271 km

2. 'Sima' is a part of

(1) outer core

(2) crust

(3) upper mantle

(4) lower mantle

(351) (P.T.O.)

3.	Musl	hroom, Inselber	g ar	nd Zeugen are p	rodu	iced by		
	(1) v	wind erosion	(2)	glacial erosion	(3)	river erosion	(4)	sea erosion
4.	Pater	rnoster lake is	chai	racteristic of				
	(1) 8	aeolian action	(2)	glacial action	(3)	fluvial action	(4)	stream terraces
5.	The	crust and uppe	er pa	art of upper man	ntle	together constitu	ıte	
	(1) t	troposphere	(2)	asthenosphere	(3)	lithosphere	(4)	biosphere
6.	Alluv	vial fans are sig	gnific	cant				
	(1) f	luvial landform	.s		(2)	glacial landforn	ns	
	(3) 8	aeolian landforr	ns		(4)	karst topograpl	ny	
7.	Long more	;, narrow and six	nuoı	is ridges of sand	s an	d gravels situate	d in 1	the middle of ground
	(1)	drumlins	(2)	crag and tail	(3)	eskers	(4)	kames
8.	Whic	th of the following	ing i	s formed by wir	nd er	rosion?		
	(1) Y	fardang	(2)	Gorges	(3)	Loess	(4)	Butte
9.	The i	nstrument use	d for	r recording seisr	nic v	vaves is		
	(1) t	hermometer	(2)	seismograph	(3)	barometer	(4)	seismogram
(351)				2				

10.	Headlands are prod	luced by					
	(1) groundwater er	•	(2)	river erosion			
	(3) marine erosion		(4)	wind erosion			
11.	Stalagmites are cha	aracteristic feature o	of				
	(1) river	(2) glacier	(3)	groundwater	(4)	wind	
12.	Which one among	the following is a fe	ature	produced by w	ind?		
	(1) Drumlins	(2) Loess	(3)	Delta	(4)	Canyons	
13.	Find odd one out						
	(1) Granite	(2) Basalt	(3)	Slate	(4)	Diorite	
14.	Which one is an a	rgillaceous rock?					
	(1) Sandstone	(2) Limestone	(3)	Conglomerate	(4)	Shale	
15.	The 'Nebular Hypot	thesis' was proposed	i by				
	(1) Kant		(2)	Laplace			
	(3) Kant and Lapla	ace	(4)	Moulten and C	ham	berlin	
16.	'Conorad discontinu	uity' lies between					
	(1) crust and man	tle	(2)	sial and sima			
	(3) sima and man	ile	(4)	mantle and cor	·e		
(351)		3	}	·			(P.T.O.)

17.	Newly deposited clays have porosity		
	(1) up to 5% (2) up to 100%	(3)	up to 70% (4) up to 30%
18.	Antidunes develop under		
	(1) transitional flow regime	(2)	lower flow regime
	(3) upper flow regime	(4)	both in lower and upper flow regime
19.	Large-scale cross-beds have the minim	um t	hickness of
	(1) 10 cm (2) 50 cm	(3)	66 cm (4) 5 cm
20.	Bauma sequence forms in		
	(1) shallow sea (2) rivers	(3)	desert (4) deep sea
21.	Average depth of fair weather wave bas	se is	
	(1) 40-50 m (2) 8-15 m	(3)	70-80 m (4) 100 m
22.	Debris flow produce		
	(1) clast supported texture	(2)	grain supported texture
	(3) matrix supported texture	(4)	cement supported texture
23.	Presence of mineral glauconite suggests	5	
	(1) desert environment	(2)	glacial environment
	(3) fluvial environment	(4)	marine environment
(351)	4		

24.	Facies association of a prograding delta	a is					
	(1) coarsening upward	(2)	fining upward				
	(3) disorganized	(4)	both fining upward and disorganized				
25.	In shallow marine environment, palaeo	curre	ent patterns are				
	(1) unimodal	(2)	bimodal				
	(3) polymodal	(4)	both unimodal and bimodal				
26.	Braided River Channels develop due to						
	(1) low surface gradient and stable ba						
	(2) high suspension load						
	(3) steep surface gradient and unstabl	e bai	nks				
	(4) point bars						
27.	Greywacke sandstone indicates						
	·	_,					
	(1) active provenance tectonics and pro-		-				
	(2) stable provenance and prolonged to	ransp	oort				
	(3) active provenance tectonics and les	s tra	ansport				
	(4) stable provenance and less transpo	ort					
28.	Which one is the completely unfoliated	rock	c?				
	(1) Slate (2) Schist	(3)	Phyllite (4) Hornfels				
(351)	5		(P.T.O.				

29.	Pyr	ometamorphism generally includes								
	(1)	high pressure changes								
	(2) high temperature changes									
	(3)	low pressure and temperature chan	ges							
	(4)	high pressure and temperature cha	nges	i						
30.	Mig	gmatites are the result of								
	(1)	retrograde metamorphism	(2)	ultrametamorphism						
	(3)	palingenesis	(4)	metasomatism						
31.	Kh	ondalites are characteristic rocks of								
	(1)	amphibolite facies	(2)	granulite facies						
	(3)	eclogite facies	(4)	green-schist facies						
32.	Fin	d odd one out								
	(1)	Marble (2) Slate	(3)	Granite (4) Phyllite						
	_									
33.	Tor	malinisation is a combined effect of								
	(1)	water and fluorine								
	(2)	water, borone and fluorine								
	(3)	water, carbon dioxide and chlorine								
	(4)	water, carbon dioxide and hydrogen	L							
(251)		c								
(351)		6								

34.	Thermal metamorp	hism	of shales produ	ces			
	(1) hornfels	(2)	novaculite	(3)	phyllite	(4)	schist
35.	The metamorphic r	ock	essentially comn	nsed	of hornblende	bne	nlagioclase is
33.	(1) amphibolite		hornblendite		blue schist		hornfels
	(1) ampinoonio	(-,		(-)		(' /	
36.	The most common	acce	ssory mineral in	ecle	ogites is		
	(1) ilmenite	(2)	zoisite	(3)	rutile	(4)	sphene
37.	Which one is a me	tamo	orphic texture?				
	(1) Ophitic	(2)	Clastic	(3)	Granoblastic	(4)	Subophitic
38,	The metamorphic r	oole	with manulana a	·	huro io		
30,	The metamorphic r	OCK	with maculose's	ucı	ture is		
	(1) granulose	(2)	hornfels	(3)	cataclastic	(4)	schistose
39.	The gabbroic rock	with	nit nimovenes co	mtai	ning mainly feld	enar	s and alivine is
0 5.	-				_ •	_	
	(1) norite	(2)	troctolite	(3)	dunite	(4)	eucrite
40.	The volcanic rocks	cont	aining the highe	st p	ercentage of silic	a is	
	(1) rhyolites		trachytes	-	andesites		basalts
				•			
(351)			7				(P.T.O.)

41.	Gra	mophyres are hy	pab	yssal equivalent	of			
	(1)	basalt	(2)	granite	(3)	gabbro	(4)	diorite
42.	An	example of a dis	score	dant igneous inti	rusio	on is		
	(1)	chonolith	(2)	lacolith	(3)	lopolith	(4)	bysmalith
43.	Cha	alcopyrite is ore	min	eral of				
	(1)	aluminium	(2)	copper	(3)	iron	(4)	silver
44.	A v	ertical dyke shov	ving	transverse veins	s is	known as		
	(1)	stock work	(2)	saddle reef	(3)	ladder vein	(4)	vug
45.	The	chemical compo	sitio	on of haematite i	is			
	(1)	Fe ₂ O ₃	(2)	Fe ₃ O ₄	(3)	Fe ₃ O ₂	(4)	Fe ₂ O ₄
46.	Plac	cer gold deposits	are	mostly				
	(1)	elluvial	(2)	colluvial	(3)	aeolian	(4)	alluvial
47.	Ban	nded manganese	ores	s are generally				
	(1)	epigenetic			(2)	syngenetic		
	(3)	paragenetic			(4)	both epigenetic	and	paragenetic
(351)				8				

48.	Chromite deposits	are mostly of						
	(1) igneous origin							
	(2) metamorphic o	rigin						
	(3) sedimentary origin							
	(4) both metamorp	hic and sedimenta	y origin					
49.	The chief ore of all	uminium is						
	(1) pyrolucite	(2) sphalerite	(3) baux	rite (4)	chalcopyrite			
50.	The most importan	t ore of lead is						
	(1) rutile	(2) psilomelane	(3) spha	lerite (4)	galena			
51.	The Kolar Gold Fie	ld is located in						
	(1) Bihar		(2) Karn	ataka				
	(3) Andhra Prades	h	(4) Tami	il Nadu				
52.	'Smarskite' is an o	re mineral of						
	(1) thorium	(2) uranium	(3) coba	lt (4)	copper			
53.	The purest form of	firon is						
	(1) native iron	(2) pig iron	(3) wrou	ight iron (4)	steel			
(351)			€		(P.T.O.			

Uranium deposits o	of Jac	luguda are of				
(1) metamorphic of	rigin		(2)	sedimentary origin		
(3) magmatic origin	ı		(4)	hydrothermal o	rigin	
Coal seams are often					(4)	bentonites
Pegmatite rock con	tains	one of the foll	lowing	g in abundance		
(1) Tourmaline	(2)	Spinel	(3)	Forsterite	(4)	Andesine
Plaster of Paris is	obtair	ned from				
(1) bauxite	(2)	gypsum	(3)	kaolin	(4)	limestone
The reservoir rock	of Bo	ombay High oil	field	is		
(1) sandstone	(2)	limestone	(3)	shale	(4)	clay
-		~			c	
			-	_		0.1.11
(1) Corals	(2)	Trilobites	(3)	Brachiopods	(4)	Cephalopods
Triassic begins with	h firs	t appearance o	of			
(1) Olenus			(2)	Nautilus		
(3) Otoceras woods	wardi		(4)	Macrocephalites	8	
		1	0			
	(1) metamorphic of (3) magmatic origin Coal seams are offe (1) China clay Pegmatite rock con (1) Tourmaline Plaster of Paris is (1) bauxite The reservoir rock (1) sandstone The base of Palaeo (1) Corals Triassic begins with (1) Olenus	(1) metamorphic origin (3) magmatic origin Coal seams are often for (1) China clay (2) Pegmatite rock contains (1) Tourmaline (2) Plaster of Paris is obtain (1) bauxite (2) The reservoir rock of Botal (1) sandstone (2) The base of Palaeozoic (1) (1) Corals (2) Triassic begins with firs (1) Olenus	Coal seams are often found to be associated (1) China clay (2) fire clay Pegmatite rock contains one of the following (1) Tourmaline (2) Spinel Plaster of Paris is obtained from (1) bauxite (2) gypsum The reservoir rock of Bombay High oil (1) sandstone (2) limestone The base of Palaeozoic Era is marked (1) Corals (2) Trilobites Triassic begins with first appearance of (1) Olenus (3) Otoceras woodwardi	(1) metamorphic origin (2) (3) magmatic origin (4) Coal seams are often found to be associated (1) China clay (2) fire clay (3) Pegmatite rock contains one of the following (1) Tourmaline (2) Spinel (3) Plaster of Paris is obtained from (1) bauxite (2) gypsum (3) The reservoir rock of Bombay High oil field (1) sandstone (2) limestone (3) The base of Palaeozoic Era is marked by find (1) Corals (2) Trilobites (3) Triassic begins with first appearance of (1) Olenus (2)	(1) metamorphic origin (2) sedimentary origin (3) magmatic origin (4) hydrothermal or coal seams are often found to be associated with (1) China clay (2) fire clay (3) pottery clay Pegmatite rock contains one of the following in abundance (1) Tourmaline (2) Spinel (3) Forsterite Plaster of Paris is obtained from (1) bauxite (2) gypsum (3) kaolin The reservoir rock of Bombay High oil field is (1) sandstone (2) limestone (3) shale The base of Palaeozoic Era is marked by first appearance of (1) Corals (2) Trilobites (3) Brachiopods Triassic begins with first appearance of (1) Olenus (2) Nautilus (3) Otoceras woodwardi (4) Macrocephalites	(1) metamorphic origin (2) sedimentary origin (3) magmatic origin (4) hydrothermal origin Coal scams are often found to be associated with (1) China clay (2) fire clay (3) pottery clay (4) Pegmatite rock contains one of the following in abundance (1) Tourmaline (2) Spinel (3) Forsterite (4) Plaster of Paris is obtained from (1) bauxite (2) gypsum (3) kaolin (4) The reservoir rock of Bombay High oil field is (1) sandstone (2) limestone (3) shale (4) The base of Palaeozoic Era is marked by first appearance of (1) Corals (2) Trilobites (3) Brachiopods (4) Triassic begins with first appearance of (1) Olenus (2) Nautilus (3) Otoceras woodwardi (4) Macrocephalites

(P.T.O.)

61.	The fundamental unit of chronostratigraphic classification is							
	(1) erathem	(2) system	(3)	stage	(4)	series		
62.	Find odd one out							
	(1) Period	(2) Zone	(3)	Age	(4)	Epoch		
63.	The Geological Time	e Scale (2004) inclu	des					
	(1) two eons	(2) three eons	(3)	five eons	(4)	seven eons		
64.	Which one is not a	chronostratigraphi	c uni	t?				
	(1) System	(2) Formation	(3)	Stage	(4)	Series		
65.	The Chari Formation	n is best developed	in					
	(1) Spiti basin		(2)	Kachchh basin				
	(3) Jaisalmer basir	1	(4)	Godavari basin				
66.	Isopach maps are t	used for analysis of						
	(1) stratigraphic th	ickness	(2)	depositional en	viror	iments		
	(3) sedimentary str	ructures	(4)	structural featu	ıres			
(351)		1	1				(P.T.O	

67.	The Himalayan Ne	ogene succession is	represented by	
	(1) Dagshai Forma	ation		
	(2) Siwalik Group	and Karewa Format	ion	
	(3) Subathu Forms	ation		
	(4) Kasauli Forma	tion		
68.	The law of 'order o	of superposition of b	eds' was proposed b	у
	(1) Steno	(2) Smith	(3) Kiev	(4) Phillip
69.	The Palaeozoic/Mea	sozoic boundary lies	at	
	(1) 270 ma	(2) 251 ma	(3) 240 ma	(4) 255 ma
70.	The close of Cretac	ceous marks the ext	inction of	
	(1) bivalves	(2) trilobites	(3) corals	(4) dinosaurs
71.	Nallamalai Group i	s famous for		
	(1) iron		(2) pyrite	
	(3) copper and lea	d	(4) mica	
72.	The strike of Arava	dli is		
	(1) NNW-SSE	(2) NNE-SSW	(3) NE-SW	(4) SW-NE
(351)		12	2	

73.	3. The presence of coal deposits impart great economic significance to								
	(1) Middle Gondwana sediments								
	(2) Lower Gondwana sediments								
	(3) Upper Gondwana sediments								
	(4) Late Triassic sediments								
74.	The tooth like phosphatic microfossils are								
	(1) conodonts (2) thecodonts (3) bathydonts (4) coprolites							
75.	Cephalopoda with complex suture is								
	(1) Ceratites (2) Nautilus (3) Goniatites (4) Ammonites							
7 6.	The trilobite with pygidium equal to that	of cephalon is called							
	(1) micropygous (2) macropygous							
	(3) isopygous (4	either micropygous or isopygous							
77.	Which one of the following trilobites is cha	aracteristic of Middle Cambrian?							
	(1) Redlichia (2) Olenellus (3) Paradoxides (4) Olenus							
78.	The order Primates is for								
	(1) Homo sapiens (2) Trilobites (3) Brachiopods (4) Mollusca							
(351)	13	(P.T.O.,							

79.	The	gastropod genu	s Pł	nysa is							
	(1)	uncoiled			(2))	dextrally coiled				
	(3)	sinistrally coiled	i		(4))	planispirally coi	led			
80.	The	trilobite having	larg	ge number of	lenses	\$:	in the eyes is				
	(1)	Agnostus	(2)	Microdicus	(3))	Remopleurides	(4)	Olenellus		
							,	•			
81.	The	exoskeleton of	moll	uscs is most	comm	10	nly composed of	[
	(1)	silica	(2)	calcite	(3))	aragonite	(4)	phosphate		
•	200	1			41		tion of foo	oile	in		
82.	The	least favourable	e en	vironment for	tne p	r	eservation of los	SHS	18		
	(1)	terrestrial	(2)	lacustrine	(3))	fluvial	(4)	marine		
00	337L	ich ous is mot o	him	Contro							
83.	wn	ich one is not a	DIV	aiver							
	(1)	Nautilus	(2)	Lima	(3))	Nucula	(4)	Trigonia		
0.4	D	.: -111	:								
84.	кар	oidly evolving cla	iss i	8							
	(1)	Bivalvia	(2)	Gastropoda	(3)	Cephalopoda	(4)	Brachiopoda		
85.	Fin	d odd one out									
65.	Ľ III	•									
	(1)	Lathi formation	L		(2	2)	Chari formation	1			
	(3)	Jaisalmer forma	atior	ו	(4	}	Bhadasar form	atior	1		
(351)					14						

86.	Palana legnite depos	sit is assigned to —		age.			
	(1) late Triassic	_		_	(4)	Cretaceous	
87.	Dip of the bed is al	ways measured in					
	(1) horizontal plane	:	(2)	vertical plane			
	(3) inclined plane		(4)	axial plane			
88.	An unconformity win	th almost parallel t	eds	overlying and u	nder	lying the su	irface of
	(1) non-conformity		(2)	disconformity			
	(3) para-unconformi	ity	(4)	angular unconf	ormi	ty	
89.	The folds with thick	ened crests or trou	ghs	and thinner limb	os ai	re	
	(1) open folds	(2) closed folds	(3)	isoclinal folds	(4)	overfolds	
90.	Abrupt termination	of strata marks the	pre	sence of			
	(1) fold and joint	(2) joint	(3)	fold	(4)	fault	
91.	The folds having bot	th the limbs overtu	rned	are			
	(1) cross folds		(2)	conjugate folds			
	(3) tight folds		(4)	fan folds			
92.	The structure having	g dip towards a con	nmo	n central point f	rom	all sides is	
	(1) basin	(2) fault	(3)	dome	(4)	joint	
(351)		15					(P.T.O.)

93.	A group of folds having essentially para	allel axial planes is
	(1) recumbent folds	(2) isoclinal folds
	(3) conjugate folds	(4) overturned folds
94,	Mullions are formed under	
	(1) compressive stress regime	
	(2) tensile stress regime	
	(3) shearing stress regime	
	(4) tensile and shearing stress regimes	
95.	The behaviour of perfectly elastic body	is governed by
	(1) Hook's law (2) Hilt's law	(3) bulk modulus (4) Bode's law
96.	Compressibility can be described as the	e reciprocal of
	(1) bulk modulus	(2) Young's modulus
	(3) rigidity modulus	(4) Young's and rigidity modulii
97.	Faults striking across structures like fol	d axes, schistosity, lineation, etc., are known
	(1) transverse fault	(2) longitudinal fault
	(3) diagonal fault	(4) bedding fault
(351)	16	

98.	A limited area of young	ger rocks surround	ded	by the older roo	eks is called	
	(1) outlier (2)	overlap ((3)	inlier	(4) offlap	
99.	A group of small size fat	ılts overlapping eac	ch o	ther in the area o	of their occurrenc	ee is
	(1) parallel faults	((2)	radial faults		
	(3) enechelon faults	ı	(4)	peripheral faults	S	
100.	Non-conformity is syno	nymous to				
·	(1) heterolithic unconf	_	(2)	parallel unconfo	ormity	
	(3) angular unconform	ity	(4)	disconformity		
101.	Gravity faults are form	ed under				
	(1) compressive stress	regime	(2)	tensile stress re	egime	
	(3) shear stress regime	e I	(4)	effects of torsion	nal forces	
102.	Joints developed perpe	ndicular to the fol	d a	xis are termed a	as	
	(1) columnar joints		(2)	release joints		
	(3) extension joints	I	(4)	cross joints		
103.	The greatest principal	stress axis is verti	cal	in		
	(1) normal faults		(2)	reverse faults		
	(3) thrust faults	,	(4)	strike-slip faults	s	
351)		17				(P.T.O.,

104.	. The distance between any two joints may be described as						
	(1) slip cleavage		(2)	crenulation clea	avage	e ·	
	(3) fracture cleavag	ge	(4)	bedding fissility	7		
105.	Schuppen structure	es are associated wit	h				
	(1) normal faulting		(2)	reverse faulting	,		
	(3) thrust faults		(4)	recumbent fold	ing		
106.	The simplest of all	the silicate structure	es is				
	(1) orthosilicates	(2) sorosilicates	(3)	metasilicates	(4)	inosilicates	
107.	Which one is not a	potash felspar?					
	(1) Orthoclase	(2) Oligoclage	(3)	Sanidine	(4)	Microcline	
108.	The main difference	between graphite a	nd d	liamond is			
	(1) composition		(2)	crystal structur	·e		
	(3) density		(4)	colour			
109.	Which of the follow	ing minerals is havi	ng tì	ne chemical form	ıula	(Fe, Mg) SiO ₃ ?	
	(1) Andalusite	(2) Topaz	(3)	Hypersthene	(4)	Barite	
110.	Which one of the fo	ollowing is not an ex	amp	ole of triclinic sy	stem	1?	
	(1) Kyanite	(2) Albite	(3)	Andalusite	(4)	Microcline	
351)		18					

111.	Mineral diamond crystallizes in										
	(1) orthorhombic s	ystem	(2)	tetragonal syste	m						
	(3) cubic system		(4)	monoclinic syst	em						
112.	Which of the follow	ing systems has all	clos	ed forms?							
	(1) Triclinic	(2) Cubic	(3)	Trigonal	(4)	Monoclinic					
113.	Which of the follow	ring has 3 axes of 4-	fold	symmetry?							
	(1) Baryte	(2) Gypsum	(3)	Galena	(4)	Rutile					
114.	Which one is isotro	pic mineral?									
	(1) Quartz	(2) Garnet	(3)	Tourmaline	(4)	Gypsum					
115.	In an uniaxial posi	tive mineral the velo	city	of ordinary ray i	s						
	(1) greater than th	at of extraordinary r	ay								
	(2) equal to that o	f extraordinary ray									
	(3) less than that	of extraordinary ray									
	(4) neither less no	r equal to that of ex	trao	rdinary ray							
116.	A typical monomine	eralic rock is									
	(1) syenite	(2) granite	(3)	anorthosite	(4)	dolerite					
117.	A texture in which	phenocrysts are emi	oedd	led in fine graine	ed gr	ound mass	is				
	(1) perthite		(2)	porphyritic							
	(3) graphic texture		(4)	seriate texture							
(351)		19					(P.T.O.				

118.	Find odd one out					
	(1) Idioblastic	(2) Non-clastic	(3)	Poikilitic	(4)	Blastoporphyritic
119.	Orthophyric texture	is a type of				
	(1) intergrowth text	ture	(2)	inequigranular	texti	ure
	(3) equigranular te	xture	(4)	intergranular te	extui	:e
120.	Peridotite is					
	(1) an amphibole		(2)	a pyroxene		
	(3) an acid igneous	s rock	(4)	an ultra mafic	rock	:
121.	Blue-granite is also	known as				
	(1) monozonite	(2) diorite	(3)	larvikite	(4)	nordmarkite
122.	Lavas containing m	umerous gas cavities	of	irregular shape a	are	
	(1) scoria	(2) pumice	(3)	amygdales	(4)	ignimbrites
123.	The variety of perid	otite, in which olivir	ne is	altered to serpe	ntin	e, is
	(1) pyroxenite	(2) kimberlite	(3)	dunite	(4)	bronzitites
124.	Which of the follow	ing is an oxide of ti	taniı	am and iron?		
	(1) Rutile	(2) Anatase	(3)	Ilmenite	(4)	Brookite
(351)		20				

125.	. The chemical composition of jaedite is									
	(1) MgSiO ₃	(2) Na	aFe(SiO ₃) ₂	(3)	NaAl(SiO ₃) ₂	(4)	LiAl(SiO ₃) ₂			
126.	The hardness of or	thoclase	e on Moh's sc	ale i	is					
	(1) 7	(2) 6		(3)	5	(4)	8			
127.	. The end members of orthorhombic pyroxene are									
	(1) enstatite-diopsi	de		(2)	enstatite-hypres	ther	ie			
	(3) diopside-augite			(4)	augite-jaedite					
128.	. Fibrous variety of quartz is									
	(1) flint	(2) ch	nalcedony	(3)	chert	(4)	amethyst			
129.	Which of the follow	ving is 1	not a magneti	c m	ineral?					
	(1) Pyrrhotite	(2) H	ematite	(3)	Orthoclase	(4)	Magnetite			
130.	Which one is a ligh	nt mica	?							
	(1) Phlogopite	(2) Bi	iotit <i>e</i>	(3)	Paragonite	(4)	Zinwaldite			
131.	Olivine belongs to									
	(I) neosilicate	(2) in	osilicate	(3)	sorosilicate	(4)	cyclosilicate			
(351)			21				(P.T.O.,			

132.	Wh	at is mineral 'wo	ool'?)					
	(1)	Albite	(2)	Andalusite	(3)	Asbestos	(4)	Kyani	te
133.	The	e native mineral	havi	ing hackly fractu	re i	s			
	(1)	sulphur	(2)	copper	(3)	gold	(4)	borax	
134.	Wh	ich of the follow	ing	properties is not	obs	erved under ord	inar	y lightî	?
	(1)	Colour			(2)	Inclusions			
	(3)	Pleochroism			(4)	Refractive Index	k (RI)	
135.	Au	gite shows							
	(1)	1st order interf	eren	ce colours					
	(2)	2nd order inter	ferei	nce colours					
	(3)	3rd order interi	feren	ice colours					
	(4)	4th order interf	feren	ice colours					
136.	The	e indicatrix of a	unia	ixial positive crys	stal	is a/an			
	(1)	sphere			(2)	ellipsoid			
	(3)	oblate spheroid			(4)	prolate spheroic	đ		
137.	Ver	tical section of a	a un	iaxial mineral sh	iows	ı			
	(1)	dichroism	(2)	pleochroism	(3)	isotropism	(4)	equal	illumination
(351)				22					

138.	Refr	egence is the al	oility	to produce					
	(1)	reflection	(2)	extinction	(3)	refraction	(4)	interference	
139.	The	most fundamen	ıtal :	and common for	m o	f pyroxene is			
	(1)	pyramid	(2)	prism	(3)	basal pinacoid	(4)	side pinacoid	
140.	Find	I the odd one of	ut						
	(1)	Biotite	(2)	Phlogopite	(3)	Enstatite	(4)	Muscovite	
141.	The	silicate class ha	as —	subclasses.					
	(1)	4	(2)	6	(3)	8	(4)	10	
142.	Leuc	coxene is a vari	ety o	of					
	(1)	tourmaline	(2)	talc	(3)	sphene	(4)	topaz	
143.	The	type locality for	Tri	assic is in					
	(1)	England	(2)	Germany	(3)	Canada	(4)	France	
144.	The	community of i	nter	related organism	s in	habiting in area	is		
	(1)	biotype			(2)	thenatocoenose			
	(3)	biocenose			(4)	thenotype			
145.	The	lower Gondwan	а го	cks are of	- ag	₽.			
	(1)	Cambrian	(2)	Permian	(3)	Jurassic	(4)	Triassic	
(351)				23				(P.T.O	

146.	Trilobites got extinct towards the close	of			
	(1) Devonian (2) Permian	(3)	Cambrian	(4)	Silurian
147.	The characteristic flora of Middle Gonde	wana	a is		
	(1) Glossopteris (2) Ptilophyllum	(3)	Dichroidium	(4)	Gangamopteris
148.	Katrol formation belongs to				
	(1) Triassic of Spiti	(2)	Jurassic of Jais	salm	er
	(3) Jurassic of Kachchh	(4)	1) Cretaceous of Jabalpur		
149.	In brachiopods, the pedical valve is als	o cal	lled as		
	(1) brachial valve (2) ventral valve	(3)	right valve	(4)	dorsal valve
150.	The corona is the part of ——— shell.				
	(1) ammonoid (2) trilobite	(3)	echinoid	(4)	bivalve

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मुल्यांकन किया जायेगा।
- 4. अपना *अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन* से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपिरलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अधवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।